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Abstract: Once supersymmetric neutralinos χ̃0 are produced copiously at e+e− linear

colliders, their characteristics can be measured with high precision. In particular, the

fundamental parameters in the gaugino/higgsino sector of the minimal supersymmetric

extension of the standard model (MSSM) can be analyzed. Here we focus on the de-

termination of possible CP–odd phases of these parameters. To that end, we exploit

the electron/positron beam polarization, including transverse polarization, as well as the

spin/angular correlations of the neutralino production e+e− → χ̃0
i χ̃

0
j and subsequent 2–

body decays χ̃0
i → χ̃0

kh, χ̃
0
kZ,

˜̀±
R`
∓, using (partly) optimized CP–odd observables. If no

final–state polarizations are measured, the Z and h modes are independent of the χ̃0
i po-

larization, but CP–odd observables constructed from the leptonic decay mode can help

in reconstructing the neutralino sector of the CP–noninvariant MSSM. In this situation,

transverse beam polarization does not seem to be particularly useful in probing explicit

CP violation in the neutralino sector of the MSSM. This can most easily be accomplished

using longitudinal beam polarization.
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1. Introduction

In the minimal supersymmetric standard model (MSSM) [1], the spin-1/2 partners of the

neutral gauge bosons, B̃ and W̃3, and of the neutral Higgs bosons, H̃0
1 and H̃0

2 , mix to

form the neutralino mass eigenstates χ̃0
i (i=1,2,3,4). The corresponding mass matrix in

the (B̃, W̃3, H̃
0
1 , H̃

0
2 ) basis

M =




M1 0 −mZcβsW mZsβsW

0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ
mZsβsW −mZsβcW −µ 0




(1.1)

contains several fundamental supersymmetry parameters: the U(1) and SU(2) gaugino

masses M1 and M2, the higgsino mass parameter µ, and the ratio tan β = v2/v1 of the

vacuum expectation values of the two neutral Higgs fields. Here, sβ = sinβ, cβ = cos β

and sW , cW are the sine and cosine of the electroweak mixing angle θW .
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In CP–noninvariant theories, the mass parameters M1,2 and µ are complex. By re-

parameterizing the fields, M2 can be taken real and positive without loss of generality.

Two remaining non–trivial phases are attributed to M1 and µ:

M1 = |M1| eiΦ1 and µ = |µ| eiΦµ (0 ≤ Φ1,Φµ < 2π) . (1.2)

The existence of CP–violating phases in supersymmetric theories induces, in general, elec-

tric dipole moments (EDM) [2]. The current experimental bounds on the EDM’s constrain

the parameter space including many parameters outside the neutralino/chargino sector [3].

Detailed analyses of the electron EDM show [3, 4] that the phase Φµ must be quite small,

unless selectrons are very heavy.1 In contrast, large values of Φ1 are allowed even for rather

small selectron masses. The CP–violating phase Φ1 can therefore play a significant role in

the production and decay of neutralinos, which is most easily investigated at (linear) e+e−

colliders [5 – 7, 4, 8].

Neutralinos are produced in e+e− collisions either in diagonal or mixed pairs [9]. If the

collider energy is high enough to produce all four neutralino states, the underlying SUSY

parameters {|M1|,Φ1,M2, |µ|,Φµ; tan β} can be extracted from the masses mχ̃0
i

(i=1,2,3,4)

and the cross sections [10, 11]. At the first stage of operations of a linear e+e− collider,

however, only the lighter neutralinos may be accessible. If χ̃0
1χ̃

0
2 is the only visible neutralino

pair that is accessible, measuring their masses and (polarized) production cross sections

may not suffice to determine the parameters of the neutralino mass matrix completely; the

detailed analysis of χ̃0
2 decays will then be very useful. Moreover, even if sufficiently many

different χ̃0
i χ̃

0
j states are accessible to determine all the parameters appearing in eq. (1.1),

analyses of neutralino decay will offer valuable redundancy. After all, a theory can only be

said to be tested successfully if experiments over–constrain its parameters.

In the present work we systematically investigate, both analytically and numerically,

the usefulness of electron and positron beam polarization, including transverse polarization,

for the analysis of neutralino production and decay at e+e− colliders. To this end, we exploit

spin/angular correlations of the neutralino production e+e− → χ̃0
2χ̃

0
1 and subsequent two–

body decays of χ̃0
2 → χ̃0

1h, χ̃
0
1Z, and χ̃0

2 → ˜̀±`∓ followed by ˜̀± → `±χ̃0
1 for probing

the CP properties of the neutralino sector in the MSSM. Due to the Majorana nature of

neutralinos, the decay distributions of two–body decays χ̃0
2 → χ̃0

1h, χ̃
0
1Z are independent of

the χ̃0
2 polarization, unless the polarization of the Z boson is measured. These modes can

still be used to probe a production–level CP–odd asymmetry, which however turns out to

be small in the MSSM. The slepton mode χ̃0
2 → ˜̀±

R`
∓ is an optimal polarization analyzer

of the decaying neutralino. We can construct several CP–odd “decay” asymmetries that

are sensitive to the χ̃0
2 polarization vector. Our main emphasis is on observables that

fully reflect the non–trivial angular dependence of CP–odd terms, except for the angular

dependence appearing in the propagators. Although they are not perfectly optimal, these

CP–odd asymmetries have much higher statistical significance than the conventional ones,

as demonstrated with numerical examples below.

1Large values of Φµ can also be tolerated for moderate selectron masses if tan β is close to 1. However,

this possibility is essentially excluded by Higgs boson searches at LEP.
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Figure 1: Feynman diagrams for five mechanisms contributing to the production of diagonal and

non–diagonal neutralino pairs in e+e− annihilation, e+e− → χ̃0
i χ̃

0
j (i, j=1–4).

The remainder of this article is organized as follows. section 2 describes neutralino

production, including the polarization of the neutralinos, for arbitrary beam polarization.

Two–body decays of polarized neutralinos are discussed in section 3. Section 4 deals

with the reconstruction of χ̃0
1χ̃

0
2 final states with invisible χ̃0

1. The formalism of “effective

asymmetries” is described in section 5, and numerical examples for these asymmetries are

shown in section 6. Finally, section 7 contains a brief summary and some conclusions.

2. Neutralino production in e+e− collisions

The neutralino pair production processes in e+e− collisions

e−(p, σ) + e+(p̄, σ̄)→ χ̃0
i (pi, λi) + χ̃0

j(pj , λj) ( i, j = 1, 2, 3, 4) (2.1)

are generated by the five mechanisms of the Feynman diagrams in figure 1, with s–channel

Z exchange, or t– or u–channel ẽL,R exchange. Here σ, σ̄, λi, and λj denote helicities. For

the analytical calculation, we take a coordinate system where the production occurs in the

(x, z) plane and the incident electron beam moves into +z direction. The four–momenta

appearing in eq. (2.1) are then given by

p =

√
s

2
(1, 0, 0, 1) ,

p̄ =

√
s

2
(1, 0, 0,−1) ,

pi =

√
s

2
(ei, λ1/2 sin Θ, 0, λ1/2 cos Θ) ,

pj =

√
s

2
(ej ,−λ1/2 sin Θ, 0,−λ1/2 cos Θ) , (2.2)

where

ei = 1 + µ2
i − µ2

j , ej = 1 + µ2
j − µ2

i ,

µi,j = mχ̃0
i,j
/
√
s , λ = (1− µ2

i − µ2
j)

2 − 4µ2
iµ

2
j . (2.3)

– 3 –
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The transition matrix element, after an appropriate Fierz transformation of the ẽL,R
exchange amplitudes, can be expressed in terms of four generalized bilinear charges Qαβ :

T
(
e+e− → χ̃0

i χ̃
0
j

)
=
e2

s
Qαβ

[
v̄(e+)γµPαu(e−)

] [
ū(χ̃0

i )γ
µPβv(χ̃0

j )
]
. (2.4)

These generalized charges correspond to independent helicity amplitudes which describe

the neutralino production processes for completely (longitudinally) polarized electrons and

positrons, neglecting the electron mass as well as ẽL–ẽR mixing.2 They are defined in

terms of the lepton and neutralino couplings as well as the propagators of the exchanged

(s)particles [6, 11]:

QLL = +
DZ

s2
W c

2
W

(s2
W − 1

2 )Zij −DuLgLij ,

QRL = +
DZ

c2W
Zij +DtRgRij ,

QLR = − DZ

s2
W c

2
W

(s2
W − 1

2 )Z∗ij +DtLg
∗
Lij ,

QRR = −DZ

c2W
Z∗ij −DuRg

∗
Rij . (2.5)

The first index in Qαβ refers to the chirality of the e± current, the second index to the

chirality of the χ̃0 current. The first term in each bilinear charge is generated by Z–

exchange and the second term by selectron exchange; DZ , DtL,R and DuL,R respectively

denote the s–channel Z propagator and the t– and u–channel left/right–type selectron

propagators:

DZ =
s

s−m2
Z + imZΓZ

,

DtL,R =
s

t−m2
ẽL,R

and t→ u , (2.6)

with s = (p+ p̄)2, t = (p− pi)2 and u = (p− pj)2. The matrices Zij, gLij and gRij can be

computed from the matrix N diagonalizing the neutralino mass matrix [1]

Zij = (Ni3N
∗
j3 −Ni4N

∗
j4)/2 ,

gLij = (Ni2cW +Ni1sW )(N∗j2cW +N∗j1sW )/4s2
W c

2
W ,

gRij = Ni1N
∗
j1/c

2
W . (2.7)

They satisfy the hermiticity relations of

Zij = Z∗ji , gLij = g∗Lji , gRij = g∗Rji . (2.8)

If the decay width ΓZ is neglected in the Z boson propagator DZ , the bilinear charges

Qαβ satisfy similar relations, Qαβ(χ̃0
i , χ̃

0
j , t, u) = Q∗αβ(χ̃0

j , χ̃
0
i , u, t). These relations are very

useful in classifying CP–even and CP–odd observables.

2f̃L–f̃R mixing is proportional to mf unless one tolerates deeper minima of the scalar potential where

charged sfermion fields obtain nonvanishing vacuum expectation values; although it can be enhanced at

large tan β or for large trilinear A−parameters, selectron mixing is generally negligible for collider physics

purposes.

– 4 –
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2.1 Production helicity amplitudes

With the e± mass neglected, the matrix element in eq. (2.4) is nonzero only if the electron

helicity is opposite to the positron helicity. We write the helicity amplitudes as

T (σ, σ̄, λi, λj) = T (σ,−σ, λi, λj) δσ̄,−σ ≡ 2πα 〈σ;λi λj〉 δσ̄,−σ , (2.9)

where σ, λi, λj = ±. Explicit expressions for these helicity amplitudes are [6]:

〈+; ++〉 = −
[
QRR

√
ηi+ηj− +QRL

√
ηi−ηj+

]
sin Θ ,

〈+; +−〉 = −
[
QRR

√
ηi+ηj+ +QRL

√
ηi−ηj−

]
(1 + cos Θ) ,

〈+;−+〉 = +
[
QRR

√
ηi−ηj− +QRL

√
ηi+ηj+

]
(1− cos Θ) ,

〈+;−−〉 = +
[
QRR

√
ηi−ηj+ +QRL

√
ηi+ηj−

]
sin Θ ,

〈−; ++〉 = −
[
QLL
√
ηi−ηj+ +QLR

√
ηi+ηj−

]
sin Θ ,

〈−; +−〉 = +
[
QLL
√
ηi−ηj− +QLR

√
ηi+ηj+

]
(1− cos Θ) ,

〈−;−+〉 = −
[
QLL
√
ηi+ηj+ +QLR

√
ηi−ηj−

]
(1 + cos Θ) ,

〈−;−−〉 = +
[
QLL
√
ηi+ηj− +QLR

√
ηi−ηj+

]
sin Θ , (2.10)

where ηi± = ei ± λ1/2 and ηj± = ej ± λ1/2. In the high energy asymptotic limit, ηi+ and

ηi− approach 1 and 0, respectively; only the helicity amplitudes with opposite χ̃0
i and χ̃0

j

helicities survive.

2.2 Production cross sections

We analyze neutralino production for general e± polarization states. With the scattering

plane fixed as the (x, z) plane, the azimuthal scattering angle appears in the description of

the e± polarization vectors:

−→
P e− = (PT cos Φ,−PT sin Φ, PL),

−→
P e+ = (P T cos(η − Φ), P T sin(η − Φ),−PL) , (2.11)

where η is the relative angle between the transverse components of two polarization vectors.

The density matrices ρ (ρ) of the electron (positron) in the {+,−} helicity basis are [13]

ρ =
1

2

(
1 + PL PT e

iΦ

PT e
−iΦ 1− PL

)
, ρ =

1

2

(
1 + PL −PT e−i(η−Φ)

−PT ei(η−Φ) 1− PL

)
. (2.12)

The polarized differential cross section is given by

dσ

dΩ
=

λ1/2

64π2s
|T |2 , (2.13)

where

|T |2 =
∑

σ,σ̄,λi,λj

T (σ, σ̄, λi, λj)T
∗(σ′, σ̄′, λi, λj) ρσσ′ ρσ̄′ σ̄ . (2.14)

– 5 –
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P CP Quartic charges

even even Q1 = 1
4

[
|QRR|2 + |QLL|2 + |QRL|2 + |QLR|2

]

Q2 = 1
2<e [QRRQ

∗
RL +QLLQ

∗
LR]

Q3 = 1
4

[
|QRR|2 + |QLL|2 − |QRL|2 − |QLR|2

]

Q5 = 1
2<e [QRRQ

∗
LR +QLLQ

∗
RL]

odd Q4 = 1
2=m [QRRQ

∗
RL +QLLQ

∗
LR]

Q6 = 1
2=m [QRRQ

∗
LR +QLLQ

∗
RL]

odd even Q′1 = 1
4

[
|QRR|2 + |QRL|2 − |QLL|2 − |QLR|2

]

Q′2 = 1
2<e [QRRQ

∗
RL −QLLQ∗LR]

Q′3 = 1
4

[
|QRR|2 + |QLR|2 − |QLL|2 − |QRL|2

]

Q′5 = 1
2<e [QRRQ

∗
LR −QLLQ∗RL]

odd Q′4 = 1
2=m [QRRQ

∗
RL −QLLQ∗LR]

Q′6 = 1
2=m [QRRQ

∗
LR −QLLQ∗RL]

Table 1: The independent quartic charges describing e+e− → χ̃0
i χ̃

0
j .

Note that the order of indices of ρσ̄′ σ̄ is opposite of that of ρσσ′ due to the difference

between the particle and the antiparticle. Inserting eqs. (2.10) and (2.12) into eq. (2.14)

yields

dσ

dΩ
{ij} =

α2

4s
λ1/2

[
(1− PLP̄L) Σij

UU + (PL − P̄L) Σij
UL

+ PT P̄T cos(2Φ− η) Σij
UT + PT P̄T sin(2Φ− η) Σij

UN

]
, (2.15)

where

Σij
UU =

[
1− (µ2

i − µ2
j)

2 + λ cos2 Θ
]
Q1 + 4µiµjQ2 + 2λ1/2Q3 cos Θ,

Σij
UL =

[
1− (µ2

i − µ2
j)

2 + λ cos2 Θ
]
Q′1 + 4µiµjQ

′
2 + 2λ1/2Q′3 cos Θ,

Σij
UT = λQ5 sin2 Θ,

Σij
UN = −λQ′6 sin2 Θ . (2.16)

Expressions for all relevant quartic charges Q
(′)
i in terms of bilinear charges Qαβ are given in

table 1, which also lists the transformation properties under P and CP. Non–zero transverse

e± beam polarization allows to probe four new quartic charges, Q5, Q6, Q′5, and Q′6.

– 6 –
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2.3 Neutralino polarization vector

The polarization vector ~Pi = (P iT ,PiN ,PiL) of the neutralino χ̃0
i is defined in its rest frame.

The longitudinal component P iL is parallel to the χ̃0
i flight direction in the c.m. frame, P iT

is in the production plane, and P iN is normal to the production plane. In order to extract

the vector ~Pi, we first define the polarization density matrix for the out–going neutralino

χ̃0
i :

ρiλiλ′i
=

∑
σ,λj
〈σ;λiλj〉〈σ;λ′iλj〉∗∑

σ,λi,λj
〈σ;λiλj〉〈σ;λiλj〉∗

. (2.17)

Explicit expressions for the helicity amplitudes 〈σ;λiλj〉 are given in eq. (2.10). The po-

larization vector of the neutralino χ̃0
i is then given by

~Pi = Tr(−→σ ρi) =
1

∆ij
U

(
∆ij
T ,∆

ij
N ,∆

ij
L

)
. (2.18)

We can decompose the three polarization components as well as the unpolarized part

according to combinations of e± polarizations:

∆ij
U = (1− PLPL)Σij

UU + (PL − PL)Σij
UL + PTP T {Σij

UT c(2Φ−η) + Σij
UNs(2Φ−η)} ,

∆ij
L = (1− PLPL)Σij

LU + (PL − PL)Σij
LL + PTP T {Σij

LT c(2Φ−η) + Σij
LNs(2Φ−η)} ,

∆ij
T = (1− PLPL)Σij

TU + (PL − PL)Σij
TL + PTP T {Σij

TT c(2Φ−η) + Σij
TNs(2Φ−η)} ,

∆ij
N = (1− PLPL)Σij

NU + (PL − PL)Σij
NL + PTP T {Σij

NT c(2Φ−η) + Σij
NNs(2Φ−η)} , (2.19)

where c(2Φ−η) = cos(2Φ− η), s(2Φ−η) = sin(2Φ− η), and the ΣUB (B = U, L, T, N) are in
eq. (2.16). The ΣBU , which survive even without beam polarization, are given by

ΣijLU = 2(1− µ2
i − µ2

j ) cos ΘQ′1 + 4µiµj cos ΘQ′2 + λ1/2{1 + cos2 Θ− sin2 Θ(µ2
i − µ2

j )}Q′3 ,

ΣijTU = −2 sin Θ
[
{(1− µ2

i + µ2
j )Q

′
1 + λ1/2 cos ΘQ′3}µi + (1 + µ2

i − µ2
j )µj Q

′
2

]
,

ΣijNU = 2λ1/2µj sin ΘQ4 . (2.20)

The remaining ΣAB, which contribute only with non–trivial e± polarization, are

Σij
LL = [λ+ 1− (µ2

i − µ2
j )

2] cos ΘQ1 + 4µiµj cos ΘQ2

+λ1/2[1 + cos2 Θ− sin2Θ (µ2
i − µ2

j )]Q3 ,

Σij
LT = λ1/2(1 + µ2

i − µ2
j) sin2 ΘQ′5 ,

Σij
LN = −λ1/2(1 + µ2

i − µ2
j) sin2 ΘQ6 ,

Σij
TL = −2 sin Θ

{
[(1− µ2

i + µ2
j)Q1 + λ1/2 cos ΘQ3]µi + (1 + µ2

i − µ2
j)µj Q2

}
,

Σij
TT = λ1/2µi sin 2ΘQ′5 ,

Σij
TN = −λ1/2µi sin 2ΘQ6 ,

Σij
NL = 2λ1/2µj sin ΘQ′4 ,

Σij
NT = −2λ1/2µi sin ΘQ6 ,

Σij
NN = −2λ1/2µi sin ΘQ′5 . (2.21)

– 7 –
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The P and CP properties of all these quantities are identical to those of the quartic charges

in table 1. In particular, the five quantities ΣUN ,ΣLN ,ΣTN ,ΣNU and ΣNL are CP–odd.

Brief comments on the reference frame are in order here. In the coordinate system

which we have employed so far, the scattering plane is fixed, while the direction of the e±

transverse polarization vectors differs from event to event. For a real experiment, fixed e±

polarization vectors should be more convenient. We define the transverse part of ~Pe− as +x

direction; the x and y components of the outgoing neutralino four–momentum pi are then

proportional to cos Φ and sin Φ, respectively. In this coordinate system the scattering plane

changes from event to event. Since only the relative angles between the e± polarization

vectors and the scattering plane are relevant, the final results in eqs. (2.15) and (2.19)

are still valid. In this new coordinate frame, the χ̃0
i polarization vector can be explicitly

written as
~Pi = PiT~eT + PiN~eN + PiL~eL , (2.22)

where the following three unit vectors form a co–moving orthonormal basis of the three–

dimensional space:

~eT = (cos Φ cos Θ, sin Φ cos Θ, − sin Θ) ,

~eN = (− sin Φ, cos Φ, 0) ,

~eL = (cos Φ sin Θ, sin Φ sin Θ, cos Θ) . (2.23)

Probing CP violation in the MSSM neutralino sector involves the four quartic charges

Q4, Q
′
4, Q6 and Q′6 for i 6= j. Their characteristic features can be analytically understood

from their explicit expressions in terms of the neutralino mixing matrix N . With ΓZ
neglected in the high energy limit, they are

Q
(′)
4 =

1

2c4W s
4
W

[
s4
W ∓ (s2

W − 1/2)2
]
D2
Z=m(Z2

ij)

+
DZ

2c2W

[
(DtR +DuR)=m(ZijgRij)±

s2
W − 1/2

s2
W

(DtL +DUL)=m(ZijgLij)
]

+
1

2
DuRDtR=m(g2

Rij)∓
1

2
DuLDtL=m(g2

Lij) ,

Q
(′)
6 =

1

2c2W
DZ(DtL ±DuL)=m(Zijg∗Lij) +

s2
W − 1/2

2s2
W c

2
W

DZ(DuR ±DtR)=m(Zijg∗Rij)

+
1

2
(DuRDtL ±DtRDuL)=m(gLijg

∗
Rij) , (2.24)

where the explicit form of Zij, gLij and gRij are listed in eq. (2.7). From the propagator

combinations, we see that the quartic charge Q′6 is forward–backward asymmetric with

respect to the scattering angle Θ while the other three quartic charges, Q
(′)
4 and Q6, are

forward–backward symmetric.

The relative sizes of the four CP–violating quartic charges indicate which observables

should be promising to investigate experimentally. Let us first consider the generic case of

small gaugino–higgsino mixing (with substantial CP phase Φ1). Small mixing is generally

obtained if the entries in the off–diagonal 2 × 2 blocks in the neutralino mass matrix are
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smaller than those in the diagonal blocks, allowing an expansion in powers of mZ . Analytic

expressions for N using this expansion, given in ref. [4], help to estimate the sizes of the

Q
(′)
4,6. In particular, the last term contributing to Q

(′)
4 in eq. (2.24), which is proportional

to sin Φ1, is not suppressed by small mixing angles: Q4 and Q′4 survive even without any

gaugino–higgsino mixing. In contrast Q6 and Q′6 only start at O(m2
Z). This is related

to the observation that, in the notation of ref. [11], Q
(′)
6 probe Dirac–type phases, which

vanish in the absence of nontrivial mixing between neutralino current eigenstates, whereas

Q
(′)
4 probe Majorana–type phases, which survive in this limit. In the generic case of small

gaugino–higgsino mixing, therefore, the size of Q
(′)
4 is much larger than that of Q

(′)
6 . In

the case of strong gaugino–higgsino mixing, however, Q
(′)
6 , which can only be probed with

transversely polarized beams, could exceed Q4 and/or Q′4.

3. Two–body neutralino decays

The decay patterns of heavy neutralinos (χ̃0
i>1) depend on their masses and the masses

and couplings of other sparticles and Higgs bosons. In this article we focus on the two–

body decays of neutralinos. It is possible that the kinematics prohibits some two–body

tree–level decays. However, a sufficiently heavy neutralino can decay via tree–level two–

body channels containing a Z or a Higgs boson and a lighter neutralino [14], and/or into

a sfermion–matter fermion pair.

Of particular interest in the present work are the following two–body decay modes:

χ̃0
i → χ̃0

k Z, χ̃0
i → χ̃0

k h and χ̃0
i → ˜̀±

R`
∓ , (3.1)

with ` = e or µ. If any of these processes is kinematically allowed, it will dominate any

tree–level three–body decay.

The relevant couplings are

〈 `−L | ˜̀−R |χ̃0
i 〉 = +〈 `+L | ˜̀+

R |χ̃0
i 〉∗ = −

√
2gtW N∗i1, 〈`±R|˜̀±R|χ̃0

i 〉 = 0 , (3.2)

〈χ̃0
kR|Z|χ̃0

iR〉 = −〈χ̃0
kL|Z|χ̃0

iL〉∗ = +
g

2cW
[Ni3N

∗
k3 −Ni4N

∗
k4] ,

〈χ̃0
kL|h|χ̃0

iR〉 = +〈χ̃0
kR|h|χ̃0

iL〉∗ =
g

2
[(Nk2 − tWNk1)(sαNi3 + cαNi4) + (i↔ k)] ,

where sα = cosα, cα = sinα, and α being the mixing angle between the two CP–even

Higgs states in the MSSM [1]. Note that the Z coupling is proportional to the higgsino

components of both participating neutralinos, whereas the Higgs coupling requires a hig-

gsino component of one neutralino and a gaugino component of the other.3 Since the

lighter neutralino states χ̃0
1,2 are often gaugino–like, this pattern of couplings implies that

χ̃0
i → χ̃0

1h decays will often dominate over the (kinematically preferred) χ̃0
i → χ̃0

1Z decays.

3If δmχ̃ ≡ mχ̃0
2
− mχ̃0

1
À mZ , the decay into longitudinally polarized Z bosons gets enhanced by a

factor (δmχ̃/mZ)2. If δmχ̃ ∼ O(mZ), three–body decays χ̃0
2 → χ̃0

1ff̄ may dominate over χ̃0
2 → χ̃0

1Z decays

if |µ| À mf̃ ; this does not happen in models where the entire sparticle spectrum is described by a small

number of parameters.
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However, the χ̃0
i → ˜̀±

R`
∓ decays only depend on the gaugino components of the decaying

neutralino. If kinematically accessible, they can have the largest branching ratios.

Note also that the Majorana nature of neutralinos relates the left– and right–handed

couplings of the Z and h boson to a neutralino pair; they are complex conjugate to each

other, having identical absolute magnitude. These relations lead to a characteristic prop-

erty of the corresponding two–body decays, χ̃0
i → χ̃0

kZ and χ̃0
i → χ̃0

kh: the decay dis-

tributions are independent of the polarization of the decaying neutralino χ̃0
i , unless the

polarization of the Z boson or χ̃0
k is measured. In contrast, the slepton mode in eq. (3.1)

can be exploited as optimal polarization analyzer of the decaying neutralino, if the small

lepton mass is ignored; as noted earlier, this implies that ˜̀
L–˜̀

R mixing is ignored as well.4

Furthermore, the decay distributions are completely determined by the relevant par-

ticle masses, as well as by the χ̃0
i polarization vector (in case of χ̃0

i → ˜̀±
R`
∓ decay). More

explicitly, the angular distribution in the rest frame of the decaying neutralino χ̃0
i is

1

ΓX

dΓX
dΩ∗

=
1

4π

(
1± ξX ~Pi · k̂∗1

)
, (3.3)

where ξZ,h = 0 for the Z and h decay modes, and ξl± = ∓1 for χ̃0
i → ˜̀±

R`
∓ with k̂∗1 being

the unit vector in `∓ direction. The former two decay modes can probe only “production”

asymmetries, whereas the (s)leptonic decay mode can probe “decay” asymmetries also,

which are sensitive to the χ̃0
i polarization.

4. Event reconstruction

We focus on e+e− → χ̃0
2χ̃

0
1 production, and assume χ̃0

1 to be stable (or possibly to decay

invisibly). The only visible final state particles therefore result from χ̃0
2 decay, which

simplifies the analysis. Moreover, this is the kinematically most accessible neutralino pair

production with visible final state; indeed, it is often the first sparticle production channel

accessible at e+e− colliders [15].

An important difference between χ̃0
2 → χ̃0

1(h,Z) and χ̃0
2 → ˜̀±

R`
∓ → χ̃0

1`
+`− is the

degree of event reconstruction. The latter decay chain allows complete event reconstruction

(with an, at least, two–fold ambiguity), whereas the former does not. This can be seen

by counting unknowns. The χ̃0
1χ̃

0
1(h,Z) final states contain six unknown components of

χ̃0
1 momenta (we are assuming that the masses of all produced particles have already been

determined [10], so that the energies can be computed from three–momenta); this has to be

compared with four constraints from energy–momentum conservation, and a single mass

constraint, (pχ̃0
1

+ p(h,Z))
2 = m2

χ̃0
2
. One quantity remains undetermined.

In contrast, χ̃0
1χ̃

0
1`

+`− final states produced from an on–shell ˜̀±
R have two invariant

mass constraints. With an equal number of constraints and unknowns, the event can

be reconstructed [8]. An explicit reconstruction may proceed as follows. Let k1 and k2

be the four–momenta of the two charged leptons in the final state, and p1 and q the

four–momenta of the two neutralinos; here k2 and q originate from ˜̀
R decay. Note that

4χ̃i → τ̃±1 τ
∓ decays, where τ̃L–τ̃R mixing can be important, have been analyzed in refs. [7].
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the energy p0
1 is fixed from two–body kinematics, see eq. (2.2). Then q0 is determined

from energy conservation, once the lepton energies are measured. The invariant mass

constraint (k2 + q)2 = m2
˜̀
R

can fix the scalar product ~k2 · ~q. The second mass constraint

(k1 + k2 + q)2 = m2
χ̃0

2
is used for ~k1 · ~q. When writing the unknown three–momentum ~q as

~q = a~k1 +b~k2 +c(~k1×~k2), the two coefficients a and b can be computed from the two scalar

products ~k2 · ~q and ~k1 · ~q determined above; note that the term proportional to c drops

out here. The last coefficient c can be computed from the known energy q0 with two–fold

ambiguity.

Once ~q is known, ~p1 follows immediately from momentum conservation. We can read

off the production angles Θ and Φ. This also allows to compute the χ̃0
2 three–momentum

~p2 = ~k1 + ~k2 + ~q = −~p1 (in the c.m. frame). With the known χ̃0
2 energy, we boost into the

χ̃0
2 rest frame, and read off the χ̃0

2 decay angles Θ∗ and Φ∗; recall that there is a non–trivial

dependence on these decay angles via eq. (3.3).

So far we have assumed that we know which of the two charged leptons in the final state

originates from the χ̃0
2 decay, and which one from ˜̀

R decay. Since, owing to its Majorana

nature, χ̃0
2 will decay into both ˜̀+

R`
− and ˜̀−

R`
+ final states with equal branching ratios, the

charge of the leptons does not help this discrimination of the origin of two charged leptons.

A unique assignment is nevertheless possible if the two mass differences δ2R ≡ mχ̃0
2
−m˜̀

R

and δR1 ≡ m˜̀
R
−mχ̃0

1
are very different from each other: if δ2R À δR1, the more energetic

(harder) lepton will originate from the first step of χ̃0
2 decay, and the less energetic (softer)

lepton comes from ˜̀
R decay; if δ2R ¿ δR1 the opposite assignment holds. However, if

δ2R ' δR1, both assignments often lead to physical solutions if the procedure for event

reconstruction outlined above is applied. In this unfavorable situation there is a four–fold

ambiguity in the event reconstruction.

Finally, we note that background events can be also reconstructed, in some cases again

with two–fold ambiguity. The main backgrounds to χ̃0
2 → χ̃0

1(Z, h) decays are e+e− →
ZZ, Zh production with one Z decaying invisibly. The e+e− → ZZ(→ νν̄`+`−), W+W−

(→ `+ν``
−ν̄`), ˜̀+ ˜̀−(→ `+`−χ̃0

1χ̃
0
1) are the main backgrounds to χ̃0

1χ̃
0
2 → `+`−χ̃0

1χ̃
0
1 pro-

duction.5 We can obtain a pure sample of signal events by discarding all events that can

be reconstructed as one of the background processes. This ignores the effects of measure-

ment errors, beam energy spread (partly due to bremsstrahlung), as well as initial state

radiation, but should nevertheless give a reasonable indication of the effects of cuts that

have to be imposed to isolate the signal.

5. Effective asymmetries

We are interested in constructing CP–odd observables. Schematically, they are written as

F =

∫
dΩ

dσ

dΩ
f(Ω)×L , (5.1)

5Note that we include supersymmetric slepton production as background, since it does not contribute

to the CP–odd asymmetries we wish to analyze here.
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where dσ/dΩ is the differential cross section, L =
∫
Ldt is the total integrated luminosity,

and f(Ω) is a dimensionless function of phase space observables. Introducing the luminosity

in eq. (5.1) simplifies the statistical analysis as presented below.

Simple asymmetries are constructed from the choice f = ±1, where the phase space

region giving f = +1 is the CP–conjugate of that giving f = −1 [5, 8]. While very

straightforward, this choice usually does not yield the highest statistical significance. We

decompose the differential cross section into CP–even and CP–odd terms:

dσ

dΩ
=
∑

i

eif
(e)
i (Ω) +

∑

j

ojf
(o)
j (Ω) , (5.2)

where the ei and oj are constant coefficients (products of couplings and possibly masses)

while the f (e) and f (o) are CP–even and CP–odd functions, respectively, of phase space

variables. The optimal variable to extract the coefficient oj is then proportional to f
(o)
j [16].

In our case this would lead to very complicated observables, due to the non–trivial

angular dependence of the selectron propagators D(t,u)(L,R) in eq. (2.5). Moreover, the

optimal variables would depend on both selectron masses. For simplicity, we construct

our CP–odd observables by fully including the angular dependence in the numerators of

eqs. (2.15), (2.16), (2.19), (2.20), (2.21) and (3.3), but ignoring the angular dependence in

the propagators.

For dimensionless f , the quantity F in eq. (5.1) is also dimensionless. The statistical

uncertainty of F is then given by

σ2(F ) = L×
∫
dΩ

dσ

dΩ
f2(Ω) . (5.3)

This can be seen from the fact that L(dσ/dΩ)dΩ is the number of events in the phase space

interval dΩ. For the simple case of f = ±1, σ2(F ) is simply the total number of events.

With the quantity F and its statistical uncertainty σ(F ), we can construct an effective

asymmetry:

Â[f ] =
F

σ(F )
√
L
. (5.4)

Note that Â is by construction independent of the luminosity. It is also invariant under

transformations f(Ω)→ cf(Ω) for constant c, making Â independent of the normalization

of f . The statistical significance for Â[f ] is simply given by Â[f ] ·
√
L.

6. Numerical analysis

We are now ready to present some numerical results. We will first briefly discuss the

relevant quartic charges that encode CP violation, before discussing “production” and

“decay” asymmetries.
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Figure 2: The ratios of quartic charges Q4/Q1 (dotted green), Q′4/Q1 (dashed blue), Q6/Q1 (solid

red) and Q′6/Q1 (dot–dashed black). We fixed |M1| = 0.5M2 = 150 GeV, tanβ = 5, mẽL = 500

GeV and Φµ = 0; the values of the other relevant parameters are as indicated in the figures.

6.1 Quartic charges

Table 1 shows that the four quartic charges Q4, Q6, Q
′
4 andQ′6 are CP-odd. Equation (2.16)

shows that Q′6 is responsible for the production–level asymmetry, which requires transverse

beam polarization.6 The remaining three CP–odd quartic charges can be probed only

via the χ̃0
2 polarization. Equations (2.20) and (2.21) show that Q4 contributes even for

unpolarized e± beams, whereas Q′4 (Q6) only contributes in the presence of longitudinal

(transverse) beam polarization.

Figure 2 presents these four charges normalized to Q1, which largely determines the

size of the unpolarized cross section far above threshold. All these ratios lie between −1

and 1. We took |M1| = 150 GeV, M2 = 300 GeV (so that |M1| and M2 unify at the

scale of Grand Unification [1]), a moderate tan β = 5, mẽL = 500 GeV, and Φµ = 0 (as

indicated by constraints on the electric dipole moments of the electron and neutron [2, 3]).

The default choices of the other relevant parameters are |µ| = 325 GeV, m ẽR = 300 GeV,

6We note in passing that the corresponding asymmetry for chargino production vanishes [17]: there is

no equivalent of the ẽR exchange diagram, and the relevant 2 × 2 matrix diagonalizing the chargino mass

matrix does not contain a reparametrization invariant phase.
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Φ1 = 0.6π and
√
s = 2Ebeam = 500 GeV, but one of these parameters is varied in each of

the four frames of figure 2. Finally, we chose scattering angle cos Θ = 1/
√

2 ; note that Q′6
vanishes at cos Θ = 0.

The behavior of the curves in figure 2 can be understood with the help of the expressions

in eq. (2.24). The top–left frame shows the dependence of the four ratios on the phase Φ1.

We see the typical behavior of CP–odd quantities, changing sign when sin Φ1 changes sign,

although not simple sine functions. Since we took |µ| to be close to M2, χ̃0
2 is a strongly

mixed state. However, χ̃0
1 is still mostly gaugino–like, so that |Z12| is quite small. As a

result, increasing mẽR (top–right frame) reduces |Q6| and |Q′6|, while affecting |Q4| and

|Q′4| very little; recall that the latter two quartic charges receive the dominant contribution

from the interference of t− and u−channel ẽL exchange diagrams. Increasing |µ| (bottom–

left frame) has the same effect, as expected from our earlier observation that Q6 and Q′6
need sizable gaugino–higgsino mixing, while Q4 and Q′4 do not. Finally, the bottom–right

frame shows that the dependence on the beam energy is relatively mild.

Another conclusion from figure 2 is that |Q′6| is usually the smallest of the four CP–

odd quartic charges. The reason is that in this case t− and u−channel diagrams tend to

cancel, whereas they add up in |Q6|. This indicates that measuring the production–level

asymmetry will be quite challenging, as will be discussed in the next Subsection.

6.2 Production asymmetries

The simplest choice for probing the CP–odd contribution from Q′6 to the production cross

section in eq. (2.15) is [8]

fprod = sign[cos Θ sin(2Φ)] . (6.1)

Instead a partly optimized asymmetry is suggested from the choice

fopt
prod = cos Θ sin2 Θ sin(2Φ) , (6.2)

where we have set the angle η = 0 for simplicity; nothing is gained by considering non-

vanishing angles between the transverse e+ and e− polarization vectors. The factors of

sin2 Θ and sin(2Φ) appear explicitly in the differential cross section in eq. (2.15); inclusion

of the factor cos Θ, which strictly speaking violates the construction principle described in

section 5, is necessary in this case, since this contribution to the cross section changes sign

when cos Θ→ − cos Θ.

Here it is appropriate to show that the asymmetries defined in eqs. (5.1), (6.1) and (6.2)

are indeed CP–odd. This can most easily be seen by using the so–called naive or T̃

transformation, which inverts the signs of all three–momenta and spins, but (unlike a true

T–transformation) does not exchange initial and final state. In the absence of absorptive

phases7 a violation of T̃ invariance is equivalent to CP violation, as long as CPT is conserved

(which is certainly the case in the MSSM). Recall that we fixed the +z and +x directions

via the e− beam and spin directions, respectively, which are themselves T̃ odd quantities.8

7In the present context absorptive phases can only come from the finite width in the Z−propagator,

which is entirely negligible for sÀ m2
Z , or from loop corrections.

8Note that for η = 0 the initial state is eT self–conjugate in this coordinate frame.
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In this coordinate frame a T̃ transformation therefore amounts to flipping the signs of

only the y−components of all three–momenta and spins. This is equivalent to flipping

the sign of the azimuthal angle Φ (as well as that of Φ∗, which is however irrelevant for

the production–level asymmetry), leaving Θ (and Θ∗) unchanged. Our production–level

asymmetries are therefore T̃ odd, which probe CP–violation if absorptive phases can be

ignored.

The effective asymmetries resulting from eqs. (6.1) and (6.2) are shown by the (green)

dotted and (black) solid curves, respectively, in three frames in figure 3. In these figures

we have chosen the same default parameters as in figure 2, which ensures that χ̃0
2 → χ̃0

1Z is

the only possible two–body decay of χ̃0
2.9 As noted in section 3, in this case we can measure

the χ̃0
2 polarization only if the polarization of the Z boson is determined. In particular,

one has to be able to distinguish between the two transverse polarization states in order to

construct CP–odd asymmetries involving the Z polarization. Although this measurement

is, in principle, possible for Z → `+`− decays, the efficiency is quite low due to its small

branching ratio (∼ 7% after summing over e and µ final states), and a very poor analyzing

power (from almost purely axial vector coupling for Z`+`−). Although qq̄ final states have

larger analyzing power, the measurement of the charge is very difficult. It may be only

possible to probe the production level asymmetry through this decay mode.

Unfortunately the event cannot be reconstructed in this mode, as noted in section 4.

This means that we do not know the angles Θ and Φ appearing in the definitions of eqs. (6.1)

and (6.2); the best we can do is to approximate them by the corresponding angles of the Z

boson. This leads to the (blue) dashed curves in the frames of figure 3 that show effective

asymmetries, which are based on the “optimized” choice in eq. (6.2).

The top–left frame shows these asymmetries as functions of the CP–odd phase Φ1.

We see that the “optimized” effective asymmetry exceeds the simple asymmetry based on

eq. (6.1) by typically ∼ 20%, leading to a ∼ 40% reduction of the luminosity required to

establish the existence of a non–vanishing asymmetry at a given confidence level. Unfor-

tunately replacing the true production angles (Θ and Φ) by those of the Z boson reduces

the effective asymmetry by a factor of 2.5−3.5. This suppression factor depends on the

masses of the two lightest neutralinos, which in turn depend on Φ1. In this case even for

the most favorable choice of parameters an integrated luminosity of several ab−1 would be

needed to establish a non–vanishing optimized asymmetry at the 1σ level, even assuming

100% beam polarization! This is well beyond the currently expected performance of the

international linear collider.

The lower–left frame of figure 3 shows that the situation might be better at higher

beam energies. The effective production asymmetries peak at
√
s ' 900 GeV for the given

choice of SUSY parameters. Moreover, the difference between the “theoretical” optimized

asymmetry and the one constructed from the Z boson angles becomes much smaller at

higher energy. The reason is that at
√
sÀ mχ̃0

2
the χ̃0

2 becomes ultra–relativistic; its decay

products then fall in a narrow cone around the χ̃0
2 direction, so that the differences between

9The effective asymmetry constructed from χ̃0
2 → χ̃0

1h decays is very similar to that from χ̃0
2 → χ̃0

1Z

decays; we therefore do not show numerical results for this decay mode.
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Figure 3: The top–left and both bottom frames show the effective production–level asymmetries

defined by eq. (6.1) (green dotted curves, labeled “prod.”) and (6.2) (solid black curves, labeled

“opt. prod.”), together with the “optimized” production asymmetry where the true production

angles are replaced by those reconstructed from the Z direction (blue long–dashed curves: without

cuts; red short–dashed curve: with the cuts described in the text). The top–right frame shows the

total cross section for e+e− → χ̃0
1χ̃

0
2 without (black solid curve) and with (blue dashed curve) cuts.

The default parameters are as in figure 2, but one parameter is varied in each frame.

the real production angles (Θ and Φ) and the corresponding angles derived from the flight

direction of the Z boson become small. However, even in this case 1 ab−1 would only allow

to establish an asymmetry with a significance of 3.5 standard deviations at best, ignoring

experimental resolutions and efficiencies, and assuming 100% transverse beam polarization.

The bottom–right frame shows that the situation is even worse if the mass of the SU(2)

singlet selectron ẽR is close to that of the SU(2) doublet ẽL, which is taken as 500 GeV in

this figure.

The top–right figure is a reminder that χ̃0
1χ̃

0
2 production can nevertheless provide useful

information on the phase Φ1 [4], simply through a measurement of the total production

cross section, which increases by almost a factor of three when Φ1 is varied from 0 to π;

no beam polarization is needed for this measurement. As explained in refs. [11, 4] this

is due to the fact that the production occurs in a pure P−wave for Φ1 = 0, but has a

large S−wave component for Φ1 = π. This figure also shows that, for the chosen set
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of parameters, cutting against the ZZ background as described in section 4, as well as

applying the acceptance cut

| cos ΘX | ≤ 0.9 (6.3)

for all visible final state particles X (in this case, the Z boson), only reduces the cross

section by ∼ 15%. The (red) short–dashed curve in the bottom–left frame shows that

these cuts affect the effective asymmetries even less.

6.3 Decay asymmetries

We now turn to the “decay” asymmetries, which are sensitive to the χ̃0
2 polarization. We

saw in section 3 that these can be only probed through χ̃0
2 → ˜̀±`∓ decays (ignoring three–

body decays, which will be highly suppressed if any two–body decay is allowed). The

discussion of section 4 showed that in this case we can reconstruct the event with two– or

four–fold ambiguity.

Equation (2.19) shows that there are three CP–odd terms in the χ̃0
2 polarization vector,

which are sensitive to transverse beam polarization. In order to construct the correspond-

ing “optimized” asymmetries, we first need an explicit expression for the scalar product

appearing in eq. (3.3). Working in the reference frame where the +x direction is defined

by the transverse part of the e− polarization vector, and using the same set of axes for

the definition of the χ̃0
2 decay angles Θ∗,Φ∗ in the χ̃0

2 rest frame, we find using eqs. (2.22)

and (2.23):

−→P · k̂∗1 = PT [cos Θ sin Θ∗ cos(Φ− Φ∗)− sin Θ sin Θ∗]

+PL [sin Θ sin Θ∗ cos(Φ−Φ∗) + cos Θ cos Θ∗]

+PN sin Θ∗ sin(Φ− Φ∗) , (6.4)

where we have suppressed the superscript 2 on the components of the χ̃0
2 polarization

vector. This, together with eqs. (2.19) and (2.21), leads to the following choices for f in

eq. (5.1):10

fLN = [sin Θ sin Θ∗ cos(Φ− Φ∗) + cos Θ cos Θ∗] sin(2Φ) sin2 Θ ,

fTN = [cos Θ sin Θ∗ cos(Φ− Φ∗)− sin Θ sin Θ∗] sin(2Φ) sin(2Θ) ,

fNT = [sin Θ∗ sin(Φ− Φ∗)] cos(2Φ) sin Θ . (6.5)

In each of the three expressions the factor in square brackets comes from eq. (6.4), the

second factor from eq. (2.19), and the last factor from the expressions for ΣLN , ΣTN and

ΣNT , respectively, in eq. (2.21).

Similarly, the expression for ∆21
N in eq. (2.19) contains two CP–odd terms that can be

probed with only longitudinal beam polarization, or even with unpolarized beams. Since

the expressions for ΣNU and ΣNL in eqs. (2.20) and (2.21) are identical except for different

10Note that the denominator ∆21
U in eq. (2.18) cancels against the factor ∆21

U from the production cross

section (2.15) in the final result for the cross section differential in production and decay angles.
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quartic charges, we can combine these two terms into the “optimized” longitudinal effective

asymmetry ÂL ≡ Â[fL] with

fL = [sin Θ∗ sin(Φ− Φ∗)] sin Θ . (6.6)

Note that the four functions fi defined in eqs. (6.5) and (6.6) are all orthogonal to each

other, i.e., the product of any two different functions will vanish when integrated over the

entire phase space.

Although the three asymmetries defined in eqs. (6.5) are independent of each other

(probing different ΣAB), in the context of the MSSM they all probe the same quartic charge

Q6. If mχ̃0
1

and mχ̃0
2

are known, one can therefore construct a single asymmetry to probe

Q6, called the total “optimized” transverse decay asymmetry ÂT ≡ Â[fT ] with

fT = [sin Θ sin Θ∗ cos(Φ− Φ∗) + cos Θ cos Θ∗] sin(2Φ) sin2 Θ ·
(
1 + µ2

1 − µ2
2

)

+ [cos Θ sin Θ∗ cos(Φ− Φ∗)− sin Θ sin Θ∗] sin(2Φ) sin(2Θ) · µ2

+ [sin Θ∗ sin(Φ− Φ∗)] cos(2Φ) sin Θ · 2µ2 , (6.7)

where the µi have been defined in eq. (2.3). The first, second and third line in eq. (6.7)

correspond to the contributions from ΣLN , ΣTN and ΣNT , respectively.

Finally, we also consider an effective asymmetry based on the measurement of the

momentum of the positive lepton `1 coming from the first stage of χ̃0
2 decay, defined by

Â+
1 ≡ Â[f+

1 ] with

f+
1 = sin(2Φ`+1

) . (6.8)

The advantage of this asymmetry, which is somewhat similar to the decay asymmetry

considered in ref. [8], is that it does not need event reconstruction, as long as the “primary”

and “secondary” leptons can be distinguished.

As discussed in the previous Subsection, a CP–odd observable changes sign when

Φ → −Φ and Φ∗ → −Φ∗. Evidently the asymmetries defined in eqs. (6.5) through (6.8)

satisfy this condition. Due to the sign flip in eq. (3.3) all asymmetries discussed in this

Subsection have opposite signs for χ̃0
2 → ˜̀+

R`
− and χ̃0

2 → ˜̀−
R`

+ decays; events of these two

kinds should be treated separately. Since there are equal number of events from these two

decay chains, we can simply focus on events with only positively charged primary leptons.

The two figures in figure 4 show the effective “optimized” decay asymmetries based on

eqs. (6.5), (6.7) and (6.8). We use the same default parameters as in figures 2 and 3, except

that the ẽR mass has been reduced to 155 GeV, so that χ̃0
2 → ẽ±Re

∓ decays are allowed and

dominant. Our choice of mẽR implies that mχ̃0
2
− mẽR À mẽR − mχ̃0

1
. As discussed in

section 4 this implies that the harder lepton always comes from the first step of χ̃0
2 decay,

allowing to reconstruct the event with only a two–fold ambiguity. We average over both

of these solutions when calculating the “optimized” asymmetries. We find that the wrong

reconstruction typically leads to asymmetries with the same sign as the true solution,

with (of course) smaller magnitude. The dilution of the asymmetries due to the event

reconstruction ambiguity is therefore not very severe. The effective asymmetry based on

fLN of eq. (6.5) and, especially, the one based on fT of eq. (6.7) are therefore substantially
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Figure 4: Effective transverse decay asymmetries for the same default parameters as in figure 2,

except that now mẽR = 155 GeV. The (black) dot–dashed, (magenta) long dashed and (blue)

short dashed curves show the “optimized” asymmetries based on fTN , fNT and fLN in eq. (6.5),

respectively, while the (red) solid curves show ÂT of eq. (6.7), and the (green) dotted curves show

Â+
1 of eq. (6.8). In the right (left) frame acceptance and background–removing cuts have (not) been

applied.

larger in magnitude than the simple effective asymmetry based on eq. (6.8). Note also that

the three effective asymmetries based on eq. (6.5) move “in step”, as expected from our

earlier observation that they all probe the same quartic charge Q6. Combining them into

a single effective asymmetry, as in eq. (6.7), therefore increases the size of the asymmetry

significantly.

The two frames in figure 4 differ in that the left figure does not include any cuts whereas

in the right figure we remove events that can be reconstructed as W or ẽR pair background

events. Also, we apply the acceptance cut in eq. (6.3) to both final state leptons. For the

case at hand these cuts only reduce the effective asymmetries by 10% to 20%. This high

cut efficiency is also due to our choice of masses, which implies that the two leptons in

the final state have very different energies. In contrast, both background processes have

identical energy distributions for the two leptons in the final state. Signal events can be

rarely reconstructed as background in this scenario. As a result we find that even after

cuts one would only need an integrated luminosity of ∼ 10 fb−1 to measure a non–vanishing

asymmetry at the 3σ level. This still assumes 100% beam polarization. Even for the more

realistic choice PTP T ' 0.5 one might achieve 3σ significance with ∼ 40 fb−1 of data.

This integrated luminosity should be achievable, assuming that transverse beams will be

available.

Finally, the four figures in figure 5 compare the simple asymmetry Â+
1 of eq. (6.8),

the total optimized transverse decay asymmetry ÂT , and the optimized longitudinal decay

asymmetry ÂL. We note that the longitudinal decay asymmetry is usually bigger than our

total optimized transverse asymmetry. At least for probing the CP-violating phase in the

context of the MSSM (where Φ1 is the only relevant phase in the convention where M2 is

real), therefore, one does not really seem to gain anything by transverse beam polarization.

The only exception is at large energy (bottom–right frame); this is due to the extra factor
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mχ̃0
1
/
√
s appearing in the expressions for ΣNU in eq. (2.20), and ΣNL in eq. (2.21), which

determine the size of ÂL.

The upper right panel shows a quite complicated dependence of the effective asymme-

tries on mẽR . For intermediate ẽR masses both final–state leptons in signal events can have

similar energies. As a result one often has four solutions for the event reconstruction. In

this case one cannot identify the “primary” lepton used in eq. (6.8). We have dealt with

this by simply discarding events with four solutions, since averaging over all four solutions

would dilute the asymmetries a lot. Unfortunately this reduces the cross section signifi-

cantly. At the same time ẽR pair events become more similar to our χ̃0
1χ̃

0
2 events, since,

as we just mentioned, the signal now has similar distributions for both final `± energies.

Hence the cut against selectron pair production removes more signal events in the present

case. As a result, the complete set of cuts reduces the total cross section by up to a factor

of 5, the worst case being mẽR ' 195 GeV. Note that the different asymmetries are not

equally sensitive to these cuts. The total “optimized” transverse decay asymmetry ÂT is

reduced by at worst a factor of 2, whereas the simple asymmetry Â+
1 can go down by a

factor of 4. The reason for this is that the cut efficiency depends on the same production

and decay angles that appear in the definitions of our asymmetries.

The lower left panel includes the longitudinal decay asymmetry ÂL for two different

choices of longitudinal e± beam polarization. In both cases we take opposite polarization

for the e+ and e− beams, since we are dealing with chiral couplings, see eq. (2.9). Usually

taking a right–handed electron beam is most advantageous, since it maximizes the ẽR
exchange contribution; note that the ẽR coupling to Binos, which is needed to probe the

CP–odd phase Φ1, is two times larger than that of ẽL. However, for very large |µ| this choice

is no longer optimal. In this case χ̃0
2 becomes more and more wino–like, i.e., it does not

couple to ẽR. A right–handed e− beam means that ẽL exchange does not contribute; the

Z–exchange contribution also vanishes for large |µ|. However, taking left–handed electrons

one still gets a sizable contribution from ẽL exchange to the cross section, and also to

the asymmetry. In the opposite regime of rather small |µ| the asymmetries depend very

strongly on this parameter, since here χ̃0
2 changes from a higgsino-like to a wino–like state.

As in the previous figures (as well as in ref. [8]) we took e± beam polarizations ±1. In

the case of longitudinal beams one can then suppress the W or ẽR pair background (but not

both), by appropriate choice of polarization. However, in practice the beam polarization

will be significantly smaller than this; we therefore left the cuts against both backgrounds

in place. We also note that longitudinal beam polarization can increase ÂL significantly,

although the very small size of this effective asymmetry for our “default” parameters and

transversely polarized beams (top left frame) is clearly accidental.

Last but not least, we have checked numerically the effect of varying the left–handed

selectron mass mẽL on the CP–odd asymmetries. The transverse decay asymmetries, with

transversely polarized beams, are sensitive to the mass; in fact, they get a bit bigger with

smaller mass values. Nevertheless, we have noted that the longitudinal asymmetry for

unpolarized beams becomes much bigger when the left–handed selectron mass is reduced.

For example, taking parameters as in the top–left frame in figure 5, except for a reduced
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Figure 5: Comparison of the simple transverse decay asymmetry (6.8) (green dotted curves),

the total “optimized” transverse decay asymmetry (6.7) (red solid curves), and the “optimized”

longitudinal decay asymmetry (6.6), the latter both for transverse (black dot–dashed) and for

longitudinal (blue dashed) beam polarization. The default values of the parameters are as in

figure 4, but one parameter is varied in each panel.

mẽL = 250 GeV, the maximal value of |ÂT | after cuts increases to about 1.2 fb−1/2, whereas

the maximum of |ÂL| reaches about 2.2 fb−1/2. We emphasize that we do not actually need

any beam polarization to probe this asymmetry, although it can be increased significantly

by using longitudinal polarized beams; for reduced ẽL mass, taking left–handed e− and

right–handed e+ beams is often optimal. Therefore, reducing the left–handed selectron

mass does not affect the ordering of AT and AL, i.e. the inequality |AL| > |AT | (for

optimized choice of longitudinal beam polarization.)

7. Summary and conclusions

In this paper we studied the production of neutralino pairs at future linear e+e− colliders,

with subsequent two–body decays of the heavier neutralinos. We found that decays of the

type χ̃0
i → χ̃0

j(h,Z) are not sensitive to the χ̃0
i polarization, unless one can measure the

polarization of the Z−boson (or that of the final–state neutralino χ̃0
j). These decays can

therefore only be used to probe CP violation in neutralino production. Unfortunately the
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corresponding CP–odd term suffers from cancelations between t− and u−channel diagrams,

and is nonzero only in the presence of higgsino–gaugino mixing. As a result, measuring

this asymmetry, which can be done only with transversely polarized e± beams, will be very

difficult, if not impossible, with the currently foreseen linear collider performance.

In contrast, χ̃0
i decays into a slepton plus a lepton allows to probe the χ̃0

i polarization

state, thereby opening up the possibility to construct several decay asymmetries. Moreover,

this decay, followed by subsequent ˜̀→ `χ̃0
1 decays, allows to reconstruct even the simplest

neutralino pair events, χ̃0
2χ̃

0
1 production with invisible (e.g., stable) χ̃0

1, with two– or four–

fold ambiguity. Under favorable circumstances experiments at a collider with (sufficiently

strongly) transversely polarized beams should then be able to determine non–vanishing

asymmetries with high statistical significance. However, even in this case a different asym-

metry, which does not depend on transverse beam polarization (but can be maximized

using longitudinal beam polarization), is generally larger in size than even the best of the

transverse decay asymmetries we studied. We saw in figure 5 that this is true both for

gaugino– and higgsino–like χ̃0
2. It also remains true when we vary the ratio |M1|/M2, in

particular for |M1| > M2. However, if |M1| ÀM2, |µ|, or if both produced neutralinos are

higgsino–like, all CP–odd asymmetries become small. Recall that in the MSSM all these

asymmetries essentially result from a single (potentially large) phase, associated with the

U(1) gaugino mass (in the convention where the SU(2) gaugino mass is real and positive).

We therefore conclude that, at least in the context of neutralino production in the

MSSM, transverse beam polarization is not particularly useful in probing explicit CP vi-

olation. Once the relevant masses have been determined, the most sensitive probe of the

relevant CP–odd phases remains the total cross section [4], although it is a CP–even ob-

servable. If this measurement indicates that some phase differs from 0 or π, one needs to

see explicit CP violation, in order to convince oneself that the variation of the cross sec-

tion is indeed due to a phase, rather than due to some extension of the MSSM. However,

as noted above, this can be most easily accomplished by using longitudinal, rather than

transverse, beam polarization.

The situation might be different in extensions of the MSSM, however. Whenever the

quartic charges Q6 and Q′6 defined in section 2.2 contain (combinations of) phases that are

independent of those in Q4 and Q′4, the option of transverse beam polarization might be

very useful for determining these phases. In the NMSSM, for example, the neutralino mass

matrix contains additional CP–odd phases associated with the singlino sector, which can

be large. A dedicated analysis along the lines presented in this paper would be required

to decide whether transverse beam polarization could be helpful in disentangling this more

complicated neutralino sector.
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